a<sub>3</sub>

 $b_3$ 

 $a_3b_1$ 

 $\overline{a_3b_0}$   $a_2b_0$   $a_1b_0$ 

 $a_2b_1$   $a_1b_1$   $a_0b_1$ 

 $a_1$ 

 $b_1$ 

 $a_0 x$ 

 $b_0$ 

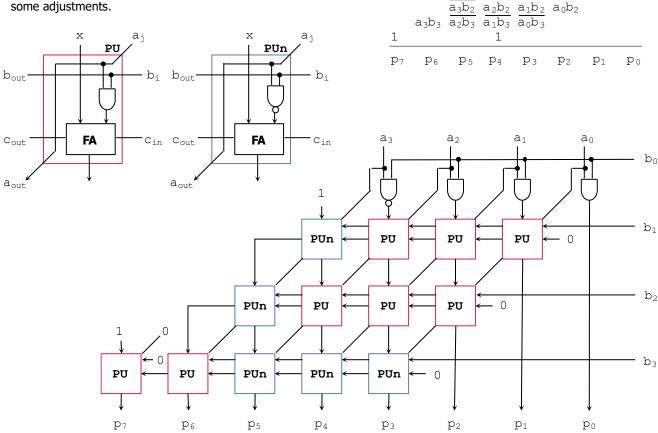
 $a_0b_0$ 

# **Laboratory 3**

(Due date: **011**: October 8<sup>th</sup>, **005**: October 9<sup>th</sup>, **007**: October 10<sup>th</sup>)

# **OBJECTIVES**

- ✓ Use the Structural Description on VHDL.
- ✓ Test arithmetic circuits on an FPGA.


#### **VHDL CODING**

✓ Refer to the <u>Tutorial</u>: <u>VHDL for FPGAs</u> for a list of examples.

# FIRST ACTIVITY (100/100)

#### **DESIGN PROBLEM**

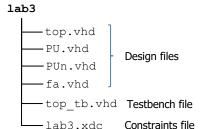
 The figure depicts a 2's complement array multiplier for two 4-bit signed numbers. It is based on the basic unsigned multiplier with some adjustments.



### **PROCEDURE**

- Vivado: Complete the following steps:
  - ✓ Create a new Vivado Project. Select the corresponding Artix-7 FPGA device (e.g.: the XC7A50T-1CSG324 FPGA device for the Nexys A7-50T).
  - ✓ Write the VHDL code for this signed array multiplier. <u>Synthesize</u> your code.
    - Use the <u>Structural Description</u>: Create a separate .vhd file for the Full Adder, the Processing Unit (PU), the flipped Processing Unit (PUn) and the top file (Array Multiplier).
  - ✓ Write the VHDL testbench to test the circuit for all possible cases (256 cases). Use 'for loop'.
  - ✓ Perform <u>Functional Simulation</u> and <u>Timing Simulation</u> of your design. **Demonstrate this to your TA**.
    - Your simulation might need more time than Vivado Simulator's default (1 us). For example, to add 5 us, you can go to the TCL console and type: run 5 us.
    - Note that you can represent your data as signed (2C) integers (use  $Radix \rightarrow Signed Decimal$ ).

✓ I/O Assignment: Generate the XDC file associated with your board.


Suggestion:

| Board pin names      | SW7            | SW6   | SW5   | SW4            | SW3            | SW2   | SW1 | SW0            | LED7           | LED6           | LED5           | LED4  | LED3           | LED2  | LED1           | LED0           |
|----------------------|----------------|-------|-------|----------------|----------------|-------|-----|----------------|----------------|----------------|----------------|-------|----------------|-------|----------------|----------------|
| Signal names in code | A <sub>3</sub> | $A_2$ | $A_1$ | A <sub>0</sub> | B <sub>3</sub> | $B_2$ | В1  | B <sub>0</sub> | P <sub>7</sub> | P <sub>6</sub> | P <sub>5</sub> | $P_4$ | P <sub>3</sub> | $P_2$ | P <sub>1</sub> | P <sub>0</sub> |

- The board pin names are used by all the listed boards (Nexys A7-50T/A7-100T, Basys 3, Nexys 4/DDR). The I/Os listed here are all active high.
- ✓ Generate and download the bitstream on the FPGA and perform testing: use a sample of representative cases (e.g.: 8 cases) from your testbench. **Demonstrate this to your TA**.

## **SUBMISSION**

- Submit to Moodle (an assignment will be created):
  - $\checkmark$  The lab sheet (<u>as a .pdf</u>) signed off by the TA (or instructor).
  - √ (As a .zip file) the six generated files: VHDL code (4 files), VHDL testbench, and XDC file. DO NOT submit the whole Vivado Project.
    - Your .zip file should only include one folder. Do not include subdirectories.
    - It is strongly recommended that all your design files, testbench, and constraints file be located in a single directory. This will allow for a smooth experience with Vivado.
    - You should only submit your source files AFTER you have demoed your work. Submission of work files without demoing will be assigned <u>NO CREDIT</u>.



| TA signature: | Date: |
|---------------|-------|
|               |       |